Abstract
This study was initiated to examine the effects of caffeine on the DNA damage response (DDR) and homologous recombination (HR) in mammalian cells. A 5 mM caffeine treatment caused the cell cycle to stall at G2/M and cells eventually underwent apoptosis. Caffeine exposure also induced a strong DDR along with subsequent activation of wildtype p53 protein. An unexpected observation was the caffeine-induced depletion of Rad51 (and Brca2) proteins. Consequently, caffeine-treated cells were expected to be inefficient in HR. However, a dichotomy in the HR response of cells to caffeine treatment was revealed. Caffeine treatment rendered cells significantly better at performing the nascent DNA synthesis that accompanies the early strand invasion steps of HR. Additionally, caffeine treatment increased chromatin accessibility and elevated the efficiency of illegitimate recombination. Conversely, the increase in nascent DNA synthesis did not translate into a higher number of gene targeting events. Thus, prolonged caffeine exposure stalls the cell cycle, induces a p53-mediated apoptotic response and a down-regulation of critical HR proteins, and for reasons discussed, stimulates early steps of HR, but not the formation of complete recombination products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.