Abstract

The metabolism and toxicity of current-use herbicide safeners remain understudied. We investigated the enantioselective metabolism of the safener benoxacor in Rhesus monkey subcellular fractions. Benoxacor was incubated with liver microsomes and cytosol from female and male monkeys (≤30 min). Benoxacor levels and enantiomeric fractions were determined with gas chromatography. Benoxacor was metabolized by microsomal cytochrome P450 enzymes (CYPs), cytosolic glutathione-S-transferases (GSTs), and microsomal and cytosolic carboxylesterase (CESs). CES-mediated microsomal metabolism followed the order males > females, whereas the CYP-mediated clearance followed the order females > males. CYP-mediated metabolism initially resulted in an enrichment of the second eluting benoxacor enantiomer (E2-benoxacor), whereas the first eluting benoxacor enantiomer (E1-benoxacor) was enriched after 10 or 30 min in female or male microsomal incubations. Benoxacor metabolism by GSTs was enantiospecific, with a total depletion of E1-benoxacor after approximately 20 min. Thus, the enantioselective metabolism of benoxacor by GSTs and CYPs may affect its toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call