Abstract
We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.