Abstract

In this paper we examine the stability of a two-dimensional wake profile of the form u(y) = U∞(1 – r e-sy2) with respect to a pulsed disturbance at a point in the fluid. The disturbed flow forms an expanding wave packet which is convected downstream. Far downstream, where asymptotic expansions are valid, the motion at any point in the wave packet is described by a particular three-dimensional wave having complex wave-numbers. In the special case of very unstable flows, where viscosity does not have a significant influence, it is possible to evaluate the three-dimensional eigenvalues in terms of two-dimensional ones using the inviscid form of Squire's transformation. In this way each point in the physical plane can be linked to a particular two-dimensional wave growing in both space and time by simple algebraic expressions which are independent of the mean flow velocity profile. Computed eigenvalues for the wake profile are used in these relations to find the behaviour of the wave packet in the physical plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.