Abstract
In Xenopus laevis the development of hypothalamic monoaminergic cells was studied in relation to adaptation to background colour. The first melanophores appear at stage 33/34 (normal table of Nieuwkoop and Faber, 1956), gradually increasing in number. The melanine granules are dispersed throughout the cell, irrespective of the background colour. The dispersion apparently is caused by MSH released by the developing pars intermedia cells. Between stage 39 and stage 41, larvae placed on a white background changed colour from black to white due to aggregation of the melanine granules within the melanophores. With Falck's method for demonstrating monoamines, a small number of fluorescent cells was observed in the hypothalamus simultaneously with the first background-dependent colour change. These cells were arranged in a paired nucleus, bordering the third ventricle. Initially, the nucleus extends from 50 microns behind the optic chiasma to the lateral dilatations of the third ventricle; 8–10 hours later, similar cells were also found at the lateral dilatations and in the dorso-lateral part of the infundibular lobe. The cells have apical processes protruding in the ventricular lumen. Fluorescent axons, originating from the cells, were occasionally observed. Considering the above-mentioned results in combination with the electron microscopical data of Nyholm (1972), it is concluded that the MSH producing cells are under monoaminergic nervous control from the beginning of background colour adaptation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have