Abstract

Separation techniques are employed to treat and preconcentrate samples. Preconcentration commonly employs adsorption due to the wide range of sorbents available. The biosorbent composite has emerged as a highly effective alternative, primarily due to its selectivity for active sites and its impressive adsorption capability. This study aimed to assess and create a spherical biosorbent composite using cellulose acetate and avocado seed. The purpose of this work was to use a biosorbent composite for copper adsorption by flame atomic absorption spectrometry. The copper adsorption follows the Langmuir isotherm, which indicates that it occurs in a monolayer and is homogeneous. Additionally, the adsorption nature is favorable according to the RL factor. The highest capacity for copper adsorption is 0.121 mg g−1. The report describes the methodology and validation process for quantifying copper. The findings demonstrate that the composite biosorbent enables accurate preconcentration and quantification of copper found in decongestants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.