Abstract
Recently we found that the elastic field is uniform in a pentagonal star (five-pointed star inclusion) [1], and in a triangular inclusion [2], when an eigenstrain is distributed uniformly in these inclusions. This result is similar to the famous result of Eshelby (1957) that the elastic field is uniform in an ellipsoidal inclusion in an infinitely body when an eigenstrain is distributed uniformly in the ellipsoidal inclusion. We also found that for a Jewish star (Star of David or six points star) or a rectangular inclusion subjected to a uniform eigenstrain, the stress field is not uniform in these inclusions. These results also hold for two dimensional plane strain cases. Furthermore these analytical results are confirmed experimentally by photoelasticity method. In this paper, we investigate a more general inclusion of an m-pointed polygonal inclusion subjected to the uniform eigenstrain. We conclude that the stress field is uniform when m is odd number. This conclusion agrees with the speculation made by B. Boley after the author's talk at Shizuoka [2].
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have