Abstract
A program, NUCFIT, has been written for simulating the effects of conformational averaging on nuclear Overhauser enhancement (NOE) intensities for the spin systems found in nucleic acids. Arbitrary structures can be generated, and the NOE time courses can be calculated for truncated one-dimensional NOEs, two-dimensional NOE and rotating frame NOE spectroscopy (NOESY and ROESY) experiments. Both isotropic and anisotropic molecular rotation can be treated, using Woessner's formalism (J. Chem. Phys. (1962) 37, 647–654). The effects of slow conformational averaging are simulated by taking population-weighted means of the conformations present. Rapid motions are allowed for by using order parameters which can be supplied by the user, or calculated for specific motional models using the formalism of Tropp (J. Chem. Phys. (1980) 72, 6035–6043). NOE time courses have been simulated for a wide variety of conformations and used to determine the quality of structure determinations using NMR data for nucleic acids. The program also allows grid-searching with least-squares fitting of structures to experimental data, including the effects of spin-diffusion, conformational averaging and rapid internal motions. The effects of variation of intra and internucleotide conformational parameters on NOE intensities has been systematically explored. It is found that (i) the conformation of nucleotides is well determined by realistic NOE data sets, (ii) some of the helical parameters, particularly the base pair roll, are poorly determined even for extensive, noise-free data sets, (iii) conformational averaging of the sugars by pseudorotation has at most second-order influence on the determination of other parameters and (iv) averaging about the glycosidic torsion bond also has, in most cases, an insignificant effect on the determination of the conformation of nucleotides.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have