Abstract
A pulsed nuclear magnetic resonance (NMR) procedure was developed for the quantitative determination of deuterium and tritium in radioactive, effluent, wastewater to aid in the design of an efficient combined electrolytic/catalytic exchange system for the recovery of these hydrogen isotopes. The deuterium and tritium NMR signals were observed at 9.210 and 45.7 MHz, respectively. Ten different effluent water samples were analyzed for deuterium and tritium to establish base-line data for the preparation of standard reference samples. The hydrogen isotope concentrations ranged from 0.11 to 2.40 g deuterium and from 2.0 to 21.0 mg tritium per liter of processed sample. The standard deviation of the hydrogen isotope determinations is +- 0.017 g deuterium and +- 0.06 mg tritium per liter of processed effluent water. In the future, the effectiveness of specially prepared and analyzed (calorimetry) effluent samples as tritium standards will be investigated.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have