Abstract

This publication discusses a set of issues on computer modeling of electromagnetic and thermal processes in an induction crystallizer of an aluminum melt, in which forces are created between the melt and the inductor coil, compressing the column of liquid material and preventing direct contact of the melt with the crucible walls. In known induction systems using electromagnetic pressure on molten metal, for crystallization, the parameters of the inductor are selected so that, with sufficient force, the temperature does not rise due to internal sources of heat release with sufficient water cooling of the surface. In the proposed work, heat removal mainly occurs through contact with a water-cooled support surface. The aim of the work is to determine the process parameters at which the required electromagnetic force is formed on the melt wall, taking into account the change in the current density at the interface between the solid and liquid phases of aluminum. When determining the parameters of induction crystallizers, the temperature dependences of the thermophysical properties were used. Variants of the inductor realization are investigated, which makes it possible to cover the entire volume of the melt, inside which significant changes in the electrical conductivity of aluminum and the power of internal heat sources are observed. Obtaining a cylindrical shape of the ingot, in contrast to the known electromagnetic crystallizers, is achieved by determining the design of the inductor, which provides a decrease in the repulsive electromagnetic force acting on the side surface of the melt in height. The results of the study showed the possibility of using the crystallizer at various ratios of the height and diameter of the melt column, and the intensity of cooling. The efficiency of the process for aluminum increases with an increase in the radius of the melt column, which also leads to a decrease in shape distortion in the region of the upper end.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call