Abstract
A systematic design of practicable media suitable for rewritable, ultrahigh density (>;1Tbit/sq.in.), high data rate (>;1Mbit/s/tip) scanning-probe phase-change memories is presented. The basic design requirements were met by a Si/TiN/Ge2Sb2Te5 (GST)/diamond-like carbon structure, with properly tailored electrical and thermal conductivities. Various alternatives for providing rewritability were investigated. In the first case, amorphous marks were written into a crystalline starting phase and subsequently erased by recrystallization, as in other already established phase-change memory technologies. Results imply that this approach is also appropriate for probe-based memories. However, experimentally, the successful writing of amorphous bits using scanning electrical probes has not been widely reported. In light of this, a second approach has been studied, that of writing crystalline bits in an amorphous starting matrix, with subsequent erasure by reamorphization. With conventional phase-change materials, such as continuous films of GST, this approach invariably leads to the formation of a crystalline “halo” surrounding the erased (reamorphized) region, with severe adverse consequences on the achievable density. Suppression of the “halo” was achieved using patterned media or slow-growth phase-change media, with the latter seemingly more viable.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have