Abstract

A digital Doppler processor, which will permit the Doppler center frequency of the measurement cell bandwidths to be adjusted to compensate for the effects of the Earth's rotation, will be used in the next NASA spaceborne scatterometer known as NSCAT. The authors describe the design and genesis of the NSCAT digital Doppler processor and discuss the performance tradeoff issues that were evaluated during the design phase. In this FFT (fast Fourier transform)-based technique, computation of the adjustment to the cell center frequencies will be done onboard using an approximate expression for the Doppler shift of the cell center versus orbit time. This technique also permits modification of the parameters used to locate the radar-backscatter-coefficient measurements cells by ground command in response to orbit changes. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.