Abstract
Over the past several years, the Pacific Northwest National Laboratory (PNNL) has developed an ultra-low-background proportional counter (ULBPC) technology. The resulting detector is the product of an effort to produce a low-background, physically robust gas proportional counter for applications like radon emanation measurements, groundwater tritium, and 37Ar. In order to fully take advantage of the inherent low-background properties designed into the ULBPC, a comparably low-background dedicated counting system is required. An ultra-low-background counting system (ULBCS) was recently built in the new shallow underground laboratory at PNNL. With a design depth of 30 m water-equivalent, the shallow underground laboratory provides approximately 100× fewer fast neutrons and 6× fewer muons than a surface location. The ULBCS itself provides additional shielding in the form of active anti-cosmic veto (via 2-in-thick plastic scintillator paddles) and passive borated poly (1 in.), lead (6 in.), and copper (~3 in.) shielding. This work will provide details on PNNL’s new shallow underground laboratory, examine the motivation for the design of the counting system, and provide results from the characterization of the ULBCS, including initial detector background.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have