Abstract

Microfluidic technology utilizing the deterministic lateral displacement (DLD) method holds significant promise for efficiently separating micro-particles and biological cells. Despite the notable high throughput advantages associated with DLD chips, their widespread application is impeded by the substantial manufacturing costs of tens of thousands of micropillars. This study aims to explore the feasibility of employing the injection molding method for the mass production of DLD microfluidic chips. A multistage DLD chip with varied critical diameters was designed to isolate white blood cells from the human whole blood. The separation effectiveness was verified with the polydimethylsiloxane chip fabricated by standard soft lithography. Subsequently, nickel mold inserts were electroformed to fabricate thermoplastic DLD chips via the injection molding. The replication quality of micropillars under different molding parameters was studied. The capability of injection-molded chips to effectively achieve particle separation was validated. Results showed that thermoplastic chips with good replication quality were obtained, providing a scale-up production strategy for fabricating polymer-based microfluidic chips for disposable separation applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.