Abstract

Israel Prototype testing and experimentation play a key role in the development of new products. It is common practice to build a single prototype product and then test it at specified operating conditions. It is often beneficial, however, to make several variants of a prototype according to a fractional factorial design. The information obtained can be important in comparing design options and improving product performance and quality. In such experiments the response of interest is often not a single number but a performance curve over the test conditions. In this article we develop a general method for the design and analysis of prototype experiments that combines orthogonal polynomials with two-level fractional factorials. The proposed method is simple to use and has wide applicability. We explain our ideas by reference to an experiment reported by Taguchi on carbon monoxide exhaust of combustion engines. We then apply them to an experiment on a prototype fluid-flow controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.