Abstract
In non-linear elasticity dual extremum principles can be formulated for some class of elastic deformations, for which uniqueness of the solution is assured. These results are used in the present paper to derive extremal variational principles for geometrical non-linear shells with moderate rotations. Furthermore two complementary variational principles are considered, which are stationary principles without any extremum property. The proposed theorems are valid also for the special cases of linear plates and shells, for the non-linear von Karman plate theory and for non-linear Donnell-Marguerre type shells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.