Abstract

In the present work, microcrystalline diamond powders are deposited by using a bias-enhanced hot filament chemical vapor deposition (HFCVD) apparatus. Mirror-polished silicon wafers are served as substrates, pretreated by the scratching process for 10–15s. A systematic investigation is under taken into the combined effects of deposition parameters on nucleation and growth characteristics of microcrystalline diamonds, based on the orthogonal collocation method. The results show that the morphology of final microcrystals depend mainly on that of nuclei rather than the deposition parameters, while the quality and grain size of crystals largely depend upon the deposition parameters. A high reactor pressure (3–4.5kPa) in the nucleation process is a necessary condition for depositing the ideal nuclei with the single-crystal structure and euhedral diamond faces. Then under a set of optimized growth parameters, the final single crystals exhibit the regular-shaped morphology and smooth surfaces. The CVD microcrystals with various grain sizes in the range of 0.3–2μm can be obtained by regulating the deposition time; moreover, they have a dramatically narrow particle size distribution, meeting the requirements on certain types of commercial powders without the process of sieving grain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call