Abstract

Nanostructural TiO2/modified multi-wall carbon nanotubes photocatalysts were prepared by hydrolysis of Ti(iso-OC3H7)4 providing chemical bonding of anatase TiO2 nanoparticles onto oxidized- or amino-functionalized multi-wall carbon nanotubes (MWCNT). The processes of functionalization of the MWCNT and the deposition of TiO2 influence the photocatalytic activity of the synthesized nanocomposites. The phase composition, crystallite size, and the structural and surface properties of the obtained TiO2/modified-MWCNT nanocomposite were analyzed from XRD, FEG-SEM, TEM/HRTEM and FTIR data, as well low temperature N2 adsorption. In the photocatalytic study, the TiO2/oxidized-MWCNT catalyst showed the highest and the TiO2/amino functionalized-MWCNT catalysts somewhat lower degradation rates, indicating that the enhancement of photocatalysis was supported by the more effective electron transfer properties of the oxygen- than amino-containing functional groups, which support the efficient charge transportation and separation of the photogenerated electron-hole pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call