Abstract
An accurate statistical energy function that is suitable for the prediction of protein structures of all classes should be independent of the structural database used for energy extraction. Here, two high-resolution, low-sequence-identity structural databases of 333 α-proteins and 271 β-proteins were built for examining the database dependence of three all-atom statistical energy functions. They are RAPDF (residue-specific all-atom conditional probability discriminatory function), atomic KBP (atomic knowledge-based potential), and DFIRE (statistical potential based on distance-scaled finite ideal-gas reference state). These energy functions differ in the reference states used for energy derivation. The energy functions extracted from the different structural databases are used to select native structures from multiple decoys of 64 α-proteins and 28 β-proteins. The performance in native structure selections indicates that the DFIRE-based energy function is mostly independent of the structural database whereas RAPDF and KBP have a significant dependence. The construction of two additional structural databases of α/ β and α + β-proteins further confirmed the weak dependence of DFIRE on the structural databases of various structural classes. The possible source for the difference between the three all-atom statistical energy functions is that the physical reference state of ideal gas used in the DFIRE-based energy function is least dependent on the structural database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.