Abstract

Beneath the seeming straight-forwardness of growing carbon nanotube (CNT) forests by the injection chemical vapor deposition (CVD) method, control of the forest morphology on various substrates is yet to be achieved. Using ferrocene dissolved in xylene as the precursor, we demonstrate that the concentration of ferrocene and the injection rate of the precursor dictate the CNT density of these forests. However, CNT density will also be affected by the substrates and the growth temperature which determine the diffusion of the catalyst adatoms. The CNT growth rate is controlled by the temperature and chemical composition of the gases in the CVD reactor. We show that the final height of the forest is diffusion limited, at least in the conditions of our experiments. Because of the proximity and entanglement of the CNTs in a forest, the growing CNTs can lift-up the inactive CNTs resulting in reduced density toward the base of the forest unless the nucleation rate of the new catalyst particles is sufficiently high to replenish the inactive catalyst particles. Significant loss of CNT attachment by the lift-up effect reduces the adhesion of the forest to the substrate. Optimizing the ferrocene concentration in the precursor, precursor injection rate, gas mixture, substrate, and temperature is necessary to achieve desired forest morphology for specific applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.