Abstract

Recent advances in the study of delay differential equations draw attention to the potential benefits of the interplay between random perturbations (‘noise’) and delay in neural control. The phenomena include transient stabilizations of unstable steady states by noise, control of fast movements using time-delayed feedback and the occurrence of long-lived delay-induced transients. In particular, this research suggests that the interplay between noise and delay necessitates the use of intermittent, discontinuous control strategies in which corrective movements are made only when controlled variables cross certain thresholds. A potential benefit of such strategies is that they may be optimal for minimizing energy expenditures associated with control. In this paper, the concepts are made accessible by introducing them through simple illustrative examples that can be readily reproduced using software packages, such as XPPAUT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.