Abstract

The elimination of halide ion from either 5-bromo- or 5-iodo-5,6-dihydrouracil to yield uracil is a slow reaction which, in the case of 5-iodo-5,6-dihydrouracil, is 400 times slower than the enzymatic release of 125I − from 5-[ 125I]iodouracil. The elimination of HBr from 5-bromo-5,6-dihydrouracil is subject to general base catalysis by tris(hydroxymethyl)aminomethane ( k 2 Tris base = 11 × 10 −4 M −1 min −1, 37°C, ionic strength 1.0 M). At pH values near and above physiological, both the bromo- and iododihydropyrimidines are subject to hydrolysis of the dihydropyrimidine ring, a reaction which parallels halide elimination to yield uracil. The resulting 2-halo-3-ureidopropionate then cyclizes via intramolecular attack of the ureido oxygen atom to yield halide ion and 2-amino-2-oxazoline-5-carboxylic acid as final products. In dilute hydroxide ion, the kinetics of 5-bromo-5,6-dihydrouracil hydrolysis (25°C, ionic strength 1.0 M) show a change in rate-determining step as a function of increasing hydroxide ion concentration, a result which, as in the case of 5,6-dihydrouracil, can be explained in terms of the formation of a tetrahedral addition intermediate. The data are discussed relative to enzymatically catalyzed halopyrimidine dehalogenation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.