Abstract

A kinetic study is reported of the hydrolysis of 2-methoxy-2-phenyltetrahydrofuran and 2-ethoxy-2-phenyltetrahydrofuran. At pH > 6 the rate-determining step involves H+-catalyzed formation of the oxocarbocation, this reaction occurring with cleavage of the exocyclic alkoxy group to produce a cyclic cation. Between pH 5 and pH 6 a change-over occurs and at pH < 5, the rate-determining step in product formation is breakdown of the cyclic hemiketal intermediate, 2-hydroxy-2-phenyltetrahydrofuran. The changeover occurs because the H+-catalyzed breakdown of this intermediate is a slower process than the H+-catalyzed oxocarbocation-forming step. Hydroxide ion catalysis makes the hemiketal decomposition faster at higher pH. Analogous cyclic ortho esters (2-alkoxy-1,3-dioxolanes) show this same change in rate-determining step between high pH and low pH, while acyclic acetals, ketals, and ortho esters generally have the oxocarbocation-forming stage rate determining at all acidities. It is concluded that the structural features inherent in the cyclic systems are responsible for the difference. In particular, the oxocarbocation-forming stage involves exocyclic bond cleavage, giving it an entropic advantage over the hemiketal or hemiorthoester breakdown which is endocyclic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.