Abstract

Abstract The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ, which has the same form as the Neumann system albeit for an additional effective potential. To understand how the reduced systems fit together we use singular reduction to construct an embedding of the reduced Poisson space T*S n/G into ℝ3ℓ+3. The global geometry is described, in particular the bundle structure that appears as a result of the superintegrability of the system. We show how the reduced Neumann system separates in elliptical-spherical co-ordinates. We derive the action variables and frequencies as complete hyperelliptic integrals of genus ℓ. Finally we prove a convexity result for the image of the Casimir mapping restricted to the energy surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.