Abstract
For the case of a first-class constrained system with equivariant momentum map, we study the conditions under which the double process of reducing to the constraint surface and dividing out by the group of gauge transformations G is equivalent to the single process of dividing out the initial phase space by the complexification G C of G. For the particular case of a phase space action that is the lift of a configuration space action, conditions are found under which, in finite dimensions, the physical phase space of a gauge system with first-class constraints is diffeomorphic to a manifold imbedded in the physical configuration space of the complexified gauge system. Similar conditions are shown to hold for the infinite-dimensional example of Yang-Mills theories. As a physical application we discuss the adequateness of using holomorphic Wilson loop variables as (generalized) global coordinates on the physical phase space of Yang-Mills theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.