Abstract

We explain how to deduce the degenerate analogue of Ariki’s categorification theorem over the ground field \({\mathbb{C}}\) as an application of Schur–Weyl duality for higher levels and the Kazhdan–Lusztig conjecture in finite type A. We also discuss some supplementary topics, including Young modules, tensoring with sign, tilting modules and Ringel duality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.