Abstract

In vivo research is critical to the functional dissection of multi-organ systems and whole organism physiology, and the laboratory mouse remains a quintessential animal model for studying mammalian, especially human, pathobiology. Enabled by technological innovations in genome sequencing, mutagenesis and genome editing, phenotype analyses, and bioinformatics, in vivo analysis of gene function and dysfunction in the mouse has delivered new understanding of the mechanisms of disease and accelerated medical advances. However, many significant hurdles have limited the elucidation of mechanisms underlying both rare and complex, multifactorial diseases, leaving significant gaps in our scientific knowledge. Future progress in developing a functionally annotated genome map depends upon studies in model organisms, not least the mouse. Further, recent advances in genetic manipulation and in vivo, in vitro, and in silico phenotyping technologies in the mouse make annotation of the vast majority of functional elements within the mammalian genome feasible. The implementation of a Deep Genome Project—to deliver the functional biological annotation of all human orthologous genomic elements in mice—is an essential and executable strategy to transform our understanding of genetic and genomic variation in human health and disease that will catalyze delivery of the promised benefits of genomic medicine to children and adults around the world.

Highlights

  • In vivo research is critical to the functional dissection of multi-organ systems and whole organism physiology, and the laboratory mouse remains a quintessential animal model for studying mammalian, especially human, pathobiology

  • With over 80% conserved synteny and a high degree of gene orthology, the mouse and human genomes have provided a unique opportunity for comparative functional analysis and the use of genetically altered mice to interrogate the pathobiology of human disease [1]

  • Despite the incredible scientific advances in genetics at the single gene and genomic level, the collective biomedical community has only begun to scratch the surface of knowledge about the diverse and varied in vivo pathobiological roles of functional elements throughout the human genome

Read more

Summary

The Deep Genome Project

MacRae, Roderick McInnes, Colin McKerlie, Terrence F.

Introduction
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.