Abstract

We study the decay of a very massive closed superstring (i.e. \alpha' M^2>> 1) in the unique state of maximum angular momentum. This is done in flat ten-dimensional spacetime and in the regime of weak string coupling, where the dominant decay channel is into two states of masses M_1, M_2. We find that the lifetime surprisingly grows with the first power of the mass M: T =c \alpha' M. We also compute the decay rate for each values of M_1, M_2. We find that, for large M, the dynamics selects only special channels of decay: modulo processes which are exponentially suppressed, for every decay into a state of given mass M_1, the mass M_2 of the other state is uniquely determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call