Abstract
This study introduces a novel Graph Neural Network (GNN) architecture that leverages infrared and collinear (IRC) safety and equivariance to enhance the analysis of collider data for Beyond the Standard Model (BSM) discoveries. By integrating equivariance in the rapidity-azimuth plane with IRC-safe principles, our model significantly reduces computational overhead while ensuring theoretical consistency in identifying BSM scenarios amidst Quantum Chromodynamics backgrounds. The proposed GNN architecture demonstrates superior performance in tagging semi-visible jets, highlighting its potential as a robust tool for advancing BSM search strategies at high-energy colliders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.