Abstract

Of the proteins required for pre-mRNA splicing, at least four, the DEAH-box proteins, are closely related due to the presence of a central 'RNA helicase-like' region, and extended homology through a large portion of the protein. A major unresolved question is the function of these proteins. Indirect evidence suggests that several of these proteins are catalysts for important structural rearrangements in the spliceosome. However, the mechanism for the proposed alterations is presently unknown. We present evidence that PRP22, a DEAH-box protein required for mRNA release from the spliceosome, unwinds RNA duplexes in a concentration- and ATP-dependent manner. This demonstrates that PRP22 can modify RNA structure directly. We also show that the PRP22-dependent release of mRNA from the spliceosome is an ATP-dependent process and that recombinant PRP22 is an ATPase. Non-hydrolyzable ATP analogs did not substitute for ATP in the RNA-unwinding reaction, suggesting that ATP hydrolysis is required for this reaction. Specific mutation of a putative ATP phosphate-binding motif in the recombinant protein eliminated the ATPase and RNA-unwinding capacity. Significantly, these data suggest that the DEAH-box proteins act directly on RNA substrates within the spliceosome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.