Abstract

The control of cell-cell communication via plasmodesmata (PD) plays a key role in plant development. In tree buds, low-temperature conditions (LT) induce a switch in plasmodesmata from a closed to an open state, which restores cell-to-cell communication in the shoot apex and releases dormancy. Using genetic and cell-biological approaches, we have identified a previously uncharacterized transcription factor, Low-temperature-Induced MADS-box 1 (LIM1), as an LT-induced, direct upstream activator of the gibberellic acid (GA) pathway. The LIM1-GA module mediates low temperature-induced plasmodesmata opening, by negatively regulating callose accumulation to promote dormancy release. LIM1 also activates expression of FT1 (FLOWERING LOCUS T), another LT-induced factor, with LIM1-FT1 forming a coherent feedforward loop converging on low-temperature regulation of gibberellin signaling in dormancy release. Mathematical modeling and experimental validation suggest that negative feedback regulation of LIM1 by gibberellin could play a crucial role in maintaining the robust temporal regulation of bud responses to low temperature. These results reveal genetic factors linking temperature control of cell-cell communication with regulation of seasonally-aligned growth crucial for adaptation of trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.