Abstract

For predicting missile’s interception point, the current guidance law based on neural networks avoids to model the strong nonlinear motion of a missile and simultaneously improve the anti-jamming ability of the guidance law. Although the advantages of solving the predicted intercept point problem based on neural networks are obvious, the difficulty in obtaining the target missile information still exists. In this work, we propose a dead-reckoning navigation guidance (DRNG) law. First, a neural network-based collaborative forecast scheme is proposed and utilize the advantages of different neural networks to greatly reduce the difficulty in acquiring the target information. Second, we construct an approximate realistic aerodynamic characteristics environment to simulate the motion parameters of missiles and targets. We also introduce real-time error correction for increasing the prediction accuracy of the network and improve the robustness of the proposed DRNG by using the model self-update algorithm. Finally, through a large number of simulation experiments, results show that the proposed DRNG completes the interception task in a noisy environment, when only the position parameters of a target missile are known. Moreover, it has a more optimized ballistic trajectory as compared with the traditional guidance law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.