Abstract

Apple is one of the main cultivated fruit trees worldwide. Both biotic and abiotic stresses, especially fungal diseases, have serious effects on the growth and fruit quality of apples. Cytochrome P450, the largest protein family in plants, is critical for plant growth and stress responses. However, the function of apple P450 remains poorly understood. In our previous study, ‘Hanfu’ autotetraploid showed dwarfism and fungal resistance phenotypes compared to ‘Hanfu’ diploid. Digital gene expression sequencing analysis revealed that the transcript level of MdCYP716B1 was significantly downregulated in the autotetraploid apple cultivar ‘Hanfu’. In this study, we identified and cloned the MdCYP716B1 gene from ‘Hanfu’ apples. The MdCYP716B1 protein fused to a green fluorescent protein was localized in the cytoplasm. We constructed the plant overexpression vector and RNAi vector of MdCYP716B1, and the apple ‘GL-3’ was transformed by Agrobacterium-mediated transformation to obtain transgenic plants. Overexpressing and RNAi silencing transgenic plants exhibited an increase and decrease in plant height to ‘GL-3’, respectively. RNAi silencing transgenic plants displayed increased resistance to Colletotrichum gloeosporioides, whereas overexpression transgenic plants were more sensitive to C. gloeosporioides. According to transcriptome analysis, the transcript levels of gibberellin biosynthesis genes were upregulated in MdCYP716B1-overexpression plants. In contrast with ‘GL-3’, GA3 accumulation was rose in MdCYP716B1-OE lines and impaired in MdCYP716B1-RNAi lines. Collectively, our data indicate that MdCYP716B1 regulates plant growth and resistance to fungal stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call