Abstract

Cyclin-dependent kinases (Cdk) are a family of serine/threonine protein kinases that regulate eukaryotic cell cycle progression. Their ability to modulate the cell cycle has made them an attractive target for anti-cancer therapies. Cdk protein function has been studied in a variety of Eukaryotes ranging from yeast to humans. In the social amoebozoan Dictyostelium discoideum, several homologues of mammalian Cdks have been identified and characterized. The life cycle of this model organism is comprised of a feeding stage where single cells grow and divide mitotically as they feed on their bacterial food source and a multicellular developmental stage that is induced by starvation. Thus it is a valuable system for studying a variety of cellular and developmental processes. In this review I summarize the current knowledge of the Cdk protein family in Dictyostelium by highlighting the research efforts focused on the characterization of Cdk1, Cdk5, and Cdk8 in this model Eukaryote. Accumulated evidence indicates that each protein performs distinct functions during the Dictyostelium life cycle with Cdk1 being required for growth and Cdk5 and Cdk8 being required for processes that occur during development. Recent studies have shown that Dictyostelium Cdk5 shares attributes with mammalian Cdk5 and that the mammalian Cdk inhibitor roscovitine can be used to inhibit Cdk5 activity in Dictyostelium. Together, these results show that Dictyostelium can be used as a model system for studying Cdk protein function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call