Abstract

Cyclic reduction is an algorithm invented by G. H. Golub and R. W. Hockney in the mid 1960s for solving linear systems related to the finite differences discretization of the Poisson equation over a rectangle. Among the algorithms of Gene Golub, it is one of the most versatile and powerful ever created. Recently, it has been applied to solve different problems from different applicative areas. In this paper we survey the main features of cyclic reduction, relate it to properties of analytic functions, recall its extension to solving more general finite and infinite linear systems, and different kinds of nonlinear matrix equations, including algebraic Riccati equations, with applications to Markov chains, queueing models and transport theory. Some new results concerning the convergence properties of cyclic reduction and its applicability are proved under very weak assumptions. New formulae for overcoming breakdown are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.