Abstract
The cyclic GTN (C-GTN) model, built upon the GTN model, considers the influence of cyclic loadings on the evolution of microvoids, enabling the prediction of ULCF fracture in materials. In this study, the C-GTN model was calibrated for Q355 steel based on tests on notched round bar specimens reported in the literature. Following existing four tests on single-edge notched plate (SENP) specimens subjected symmetric cyclic loadings, additional four ULCF tests were conducted on SENP specimens with asymmetric cyclic loadings. ULCF fracture was observed in these tests and ULCF lives of these SENP specimens were obtained. Mesh sensitivity was investigated for the ULCF fracture analysis of the SENP specimens with the C-GTN model. After balancing the computational accuracy and cost, the ULCF fracture analysis of the SENP specimens were conducted using finite element models with a mesh size of 0.2 mm at the notch tip. ULCF lives predicted by the C-GTN model agree very well with test results for all SENP specimens. The agreement validated the applicability of the C-GTN model for the ULCF fracture analysis of Q355 steel. The increase of the void volume fraction and the degradation of its critical value played dominant roles in the ULCF fracture of V-notched and U-notched SENP specimens respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.