Abstract

AbstractThe current study intends to develop a framework model to assess ratcheting and stress relaxation at the notch root of 1045 steel samples over asymmetric loading cycles. The framework involves the Ahmadzadeh‐Varvani (A‐V) kinematic hardening rule to control ratcheting progress and Neuber rule to accommodate for local stress and strain components at the vicinity of notch root. Plastic strain at notch root was first coupled with its counterpart in the A‐V model to establish a relation between local stress and backstress components. Calculated local stress and strain values at turning points enabled the A‐V model to assess ratcheting strain over each loading cycle. The stepwise drop in stresses at peak‐valley tips of hysteresis loops at the notch root was associated to coupled framework of the A‐V model and Neuber rule through constancy in local strain while ratcheting progressed over each cycle. This relaxed out the local stresses at tips of hysteresis loops to position on Neuber hyperbolic curve. Predicted ratcheting values at notch root of various diameters closely agreed with those of measured in steel samples over stress cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call