Abstract

In this minireview we discuss effects of excitation stress on the molecular organization and function of PS II as induced by high light or low temperature in the cyanobacterium Synechococcus sp. PCC 7942. Synechococcus displays PS II plasticity by transiently replacing the constitutive D1 form (D1:1) with another form (D1:2) upon exposure to excitation stress. The cells thereby counteract photoinhibition by increasing D1 turn over and modulating PS II function. A comparison between the cyanobacterium Synechococcus and plants shows that in cyanobacteria, with their large phycobilisomes, resistance to photoinhibition is mainly through the dynamic properties (D1 turnover and quenching) of the reaction centre. In contrast, plants use antenna quenching in the light-harvesting complex as an important means to protect the reaction center from excessive excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.