Abstract

Although the cytoplasmic domain of the human FcgammaRIa alpha-chain lacks tyrosine-based phosphorylation motifs, it modulates receptor cycling and receptor-specific cytokine production. The cytoplasmic domain of FcgammaRIa is constitutively phosphorylated, and the inhibition of dephosphorylation with okadaic acid, an inhibitor of type 1 and type 2A protein serine/threonine phosphatase, inhibits both receptor-induced activation of the early tyrosine phosphorylation cascade and receptor-specific phagocytosis. To explore the basis for these effects of the cytoplasmic domain of FcgammaRIa, we developed a series of human FcgammaRIa molecular variants, expressed in the murine macrophage cell line P388D1, and demonstrate that serine phosphorylation of the cytoplasmic domain is an important regulatory mechanism. Truncation of the cytoplasmic domain and mutation of the cytoplasmic domain serine residues to alanine abolish the okadaic acid inhibition of phagocytic function. In contrast, the serine mutants did not recapitulate the selective effects of cytoplasmic domain truncation on cytokine production. These results demonstrate for the first time a direct functional role for serine phosphorylation in the alpha-chain of FcgammaRIa and suggest that the cytoplasmic domain of FcgammaRI regulates the different functional capacities of the FcgammaRIa-receptor complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.