Abstract

Joule heating in a slender magnetic flux tube is investigated. The distribution of the magnetic field and electric sheet current encircling a vertical cylindrical magnetic tube is determined by equating the converging magnetic flux, which results from the converging and downward flow of the granulation, and the dissipative expanding magnetic flux due to Ohmic decay. Here, to ensure the mass flux conservation, an overshooting convective flow pattern resembling recent simulations was assumed. Even with the electrical resistivity from neutral hydrogen, the width of the current sheet was found to be ≈2 km, being much smaller than the tube diameter of ≈ 150 km, either from an exact or approximate (Gaussian) field distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.