Abstract

A multiproxy paleoecological investigation of Lac la Biche, a large boreal lake in northeastern Alberta, Canada, revealed that the lake was eutrophic before European settlement but has undergone additional cultural eutrophication in the past 30 to 50 years. Annual fluxes to sediments of phosphorus, nitrogen, carbon, and inorganic sediments have increased with time. A declining N–P ratio has increasingly favored nitrogen-fixing cyanobacteria. Increased deposition of microbial pigments and diatom frustules and a recent shift in diatom species also indicate increasing eutrophication. Biogenic silica increased with time, but there is no evidence of a near-surface decline that would indicate silica limitation. Stable isotopes suggest that an increasing proportion of carbon deposited in sediments is of in-lake origin, indicating increased productivity. In the basin nearest the town of Lac La Biche, an increase in δ15N followed the construction of the sewage treatment plant, but more recently, decreased δ15N in both basins suggests that nitrogen fixation has become a more important source of nitrogen. Despite documented damage to the fishery of the lake, zooplankton fossils do not show evidence of a strong trophic cascade. The study illustrates the power of a multiproxy approach in obtaining reliable paleolimnological conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call