Abstract

Abstract The quasi-binary system YbMg2-YbIn2 was studied around the equiatomic composition. In contrast to the ordered rare earth (RE) phases REMgIn (ZrNiAl type), ytterbium forms phases with different structures and pronounced Mg/In mixing (M sites). The structures of YbMg0.75In1.25 (CaLiSn type, P3m1, a = 501.95(7), c = 1087.3(2) pm, wR2 = 0.0490, 790 F 2 values, 32 variables) and Yb6Mg6.41In5.59 (Yb6Ir5Ga7 type, P63/mcm, a = 1060.77(14), c = 970.27(16) pm, wR2 = 0.0484, 701 F 2 values, 26 variables) were refined from single-crystal X-ray diffractometer data. YbMg0.75In1.25 is an AlB2 superstructure with a tripling of the subcell. The magnesium and indium atoms form three differently puckered layers of M 6 hexagons. The Yb6Mg6.41In5.59 structure is derived from the hexagonal Laves phase YbMg2 (MgZn2 type, P63/mmc). A klassengleiche symmetry reduction leads to four crystallographically independent M sites for the rows of corner- and face-sharing tetrahedra which allow a composition close to the equiatomic one. The M–M distances in both structures cover the broad range from 289 to 331 pm, comparable to the sums of the covalent radii. Temperature dependent magnetic susceptibility studies of the polycrystalline YbMg0.75In1.25 and Yb12Mg13In11 samples indicate Pauli paramagnetism with room temperature values of 2.8(1) × 10−3 emu mol−1 (YbMg0.75In1.25) and 5.2(1) × 10−3 emu mol−1 (Yb12Mg13In11).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.