Abstract

Three new cationic complexes, [Cu4Tb2(H2L)4(NO3)4(H2O)3](NO3)2·5.5H2O·2MeOH (1), [Cu4Ho2(H2L)4(NO3)4(H2O)3](NO3)2·7.5H2O (2), and [Cu4Er2(H2 L)4(NO3)4(H2O)3](NO3)2·7H2O·3MeOH (3), were synthesized and studied using elemental and TG/DTG/DSC analyses, single-crystal X-ray diffraction, and magnetic measurements. The structure analysis showed that 1–3 crystallize as (NO3)-bridged compounds and that the lanthanide(III) ion acts as a joint connecting two [CuH2L] coordination units. In each heterotrinuclear unit, an asymmetry in the degree of planarity of the bridging CuO2Ln fragments is observed. The CuII ions are five- and six-coordinate, with distorted square pyramidal and octahedral geometry, respectively, whereas the LnIII ions are nine-coordinate. The solvates 1–3 are stable at room temperature, and their desolvation process is consistent with the loss of water and/or methanol molecules. The temperature dependence of the magnetic susceptibility and the field-dependent magnetization indicate the weak ferromagnetic interaction between the paramagnetic centers CuII and TbIII/HoIII 1 and 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.