Abstract

We report the synthesis and characterization of a novel asymmetric imidazolium-based ionic liquid crystal (ILC) dimer exhibiting stable smectic phases over a wide temperature range, including room temperature. This unique molecular structure, combining two distinct mesogenic cores, reduces packing density, which enhances ion mobility and achieves high ionic conductivity in the smectic phase (0.1 mS cm−1 at 40 °C). Electrochemical impedance spectroscopy (EIS) confirmed improved ionic conductivity at lower temperatures, along with a stable electrochemical window of ±3 V. Application as a solid-state electrolyte in an electrochromic device demonstrated effective switching behavior and reversible redox cycles. These findings suggest that this asymmetric imidazolium-based ILC is a viable candidate for advanced electrochemical applications due to its structural stability and anisotropic ionic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.