Abstract
Overdose acetaminophen (APAP) can result in severe liver injury, which is responsible for nearly half of drug-induced liver injury in western countries. Previous studies have found that there existed massive hepatocellular necrosis and severe inflammatory response in APAP-induced liver injury. However, the mechanistic linkage between necroptosis and NLRP3 inflammasome pathway in APAP-induced hepatotoxicity remains poorly understood. In order to investigate the relationship between inflammation and hepatocytes death in APAP hepatotoxicity, a time-course model for APAP hepatotoxicity in C57/BL6 mice was established by intraperitoneal (i.p) injection of 300 mg/kg APAP in this study. The activity of serum enzymes and pathological changes of APAP-treated mice were evaluated, and the critical molecules in necroptosis and NF-κB-NLRP3 inflammasome signaling pathway were determined by immunoblot and immunofluorescence analysis. The results demonstrated that APAP overdose resulted in a severe liver injury. Furthermore, the expression of critical molecules in NLRP3 inflammasome and necroptosis pathways peaked at 12-24 h, and then was decreased gradually, which is consistent with the pattern of pathological injury induced by APAP. Our further investigation found that the level of IL-1β in mouse liver was closely correlated with the level of phosphorylated MLKL following exposure to APAP. Furthermore, inhibition of necroptosis with necrostatin-1 significantly suppressed the activation of NLRP3 inflammasome signaling. Taken together, our results highlighted that the cross-talk between necroptosis and NLRP3 inflammasome played a critical role for promoting APAP-induced liver injury. Inhibition of the interaction of inflammation and necroptosis by pharmaceutical methods may represent a promising therapeutic strategy for APAP-induced liver injury.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have