Abstract
We provide evidence that a single mechanism—flux flow along channels—can explain the functional form of the critical current density (Jc) in the low-temperature superconductor Nb3Sn and in the high-temperature superconductors (HTS) YBa2Cu3O7−δ (YBCO) and (Bi,Pb)2Sr2Can−1CunOx (BiSCCO) in low and high magnetic fields. In this paper, we show that standard flux pinning theories, used for the past four decades to describe Jc in low-temperature superconductors (LTS), cannot explain the strain dependence of Jc in YBCO because Jc is a function of strain but the average superconducting properties are not. We conclude that in the polycrystalline samples presented here, the channels are grain boundaries that are narrow and metallic in Nb3Sn and YBCO but wide and semiconducting in BiSCCO. In Nb3Sn, strain alters Jc by changing the superconducting properties of the grains, whereas in YBCO, strain alters Jc by changing the properties of the grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.