Abstract

The high-Tc superconductor of Ba2CaCu2O4(O,F)2 (F-0212) is an appealing material for application as it has a simple crystal structure with a highest Tc of 108 K. We have derived the intragrain critical current density (Jc), irreversibility field (Birr), flux pinning properties, etc., for the polycrystalline samples from under doping (Tc=82 K) to slightly-over doping (Tc=106 K) from the dc magnetization hysteresis loops. The Jc and Birr properties were found to improve rapidly as the doping state changes from under doping to slightly-over doping. Here we show that property of the spacing is crucial to enhance Birr as well as its thickness. An anisotropy factor for under doped Ba2CaCu2O4F2 was reckoned to 118 from a three-dimensional-two-dimensional crossover field of about 0.28 T. The double logarithmic plot of irreversibility field versus [1−(T/Tc)] analysis hints that the flux line melting model is adopted. Analysis of the normalized pinning force reveals that a surface pinning mechanism is dominant and reduced magnetic field bmax=0.2 agree with surface pinning mechanism with closely spaced pins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call