Abstract

This paper discusses the problem of critical-flow cross-sections in vortex flows. It is shown that there are two different types of vortex flows, A-type and B-type vortices (say). An A-type vortex approaches its critical flow state as its cross-sectional area increases and departs from the critical state as the cross-sectional area is decreased. This property is associated with the particular dependence of total pressure and circulation on the stream function, and it holds for both subcritical and supercritical A-type vortices. On the other hand, both subcritical and supercritical B-type vortices approach their critical flow states as their cross-sectional areas are decreased and depart from their critical states for increasing cross-sectional area. As was shown by Benjamin, setting the first variation of the flow force with respect to the stream function equal to zero leads to Euler's equation of motion. The second variation also vanishes if the corresponding flow state is critical. In this case the sign of the third variation decides whether the flow is an A-type or a B-type vortex. Within the framework of inviscid-fluid flow theory the type of a vortex is preserved unless vortex breakdown occurs. Making use of the knowledge that vortex flows are controlled by two different types of critical-flow cross-sections a variety of vortex flow phenomena are investigated, including the two types of inlet vortices that are observed upstream of jet engines, the behavior of vortex valves, the flow characteristics of liquid-fuel atomizers and the bath tub vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.