Abstract
Cross-talk between organelles and plasma membrane Ca(2+) channels is essential for modulation of the cytosolic Ca(2+) ([Ca(2+)]C) signals, but such modulation may differ among cells. In chromaffin cells Ca(2+) entry through voltage-operated channels induces calcium release from the endoplasmic reticulum (ER) that amplifies the signal. [Ca(2+)]C microdomains as high as 20-50 μm are sensed by subplasmalemmal mitochondria, which accumulate large amounts of Ca(2+) through the mitochondrial Ca(2+) uniporter (MCU). Mitochondria confine the high-Ca(2+) microdomains (HCMDs) to beneath the plasma membrane, where exocytosis of secretory vesicles happens. Cell core [Ca(2+)]C is much smaller (1-2 μm). By acting as a Ca(2+) sink, mitochondria stabilise the HCMD in space and time. In non-excitable HEK293 cells, activation of store-operated Ca(2+) entry, triggered by ER Ca(2+) emptying, also generated subplasmalemmal HCMDs, but, in this case, most of the Ca(2+) was taken up by the ER rather than by mitochondria. The smaller size of the [Ca(2+)]C peak in this case (about 2 μm) may contribute to this outcome, as the sarco-endoplasmic reticulum Ca(2+) ATPase has much higher Ca(2+) affinity than MCU. It is also possible that the relative positioning of organelles, channels and effectors, as well as cytoskeleton and accessory proteins plays an important role.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have