Abstract

Rainfall and reservoir level fluctuation are two of the main factors contributing to reservoir landslides. However, in China’s Three Gorges Reservoir Area, when the reservoir water level fluctuates significantly, it comes at a time of abundant rainfall, which makes it difficult to distinguish which factor dominates the deformation of the landslide. This study focuses on how rainfall and reservoir water level decline affect the seepage and displacement field of Baijiabao landslide spatially and temporally during drawdown of reservoir water level in the Three Gorges Reservoir Area, thus exploring its movement mechanism. The monitoring data of the landslide in the past 10 years were analyzed, and the correlation between rainfall, reservoir water level decline, and landslide displacement was clarified. By the numerical simulation method, the deformation evolution mechanism of this landslide during drawdown of reservoir water level was revealed, respectively, under three conditions, namely, rainfall, reservoir water level decline, and coupling of the above two conditions. The results showed that the deformation of the Baijiabao landslide was the coupling effect of rainfall and reservoir water level decline, while the latter effect is more pronounced.

Highlights

  • In the Three Gorges Reservoir Area of China, there are about 664 landslides which are affected by the reservoir water level, and hydrodynamic conditions such as rainfall and reservoir water level variation have different degrees of impact on the stability of these landslides [1,2,3,4,5]

  • Based on the theory of fluid-solid coupling, the model of Baijiabao landslide under the hydrodynamic boundary conditions of rainfall and reservoir water level was established by means of finite element numerical simulation, which has been confirmed as an effective model to analyze the effects of complex dynamic hydraulic boundary conditions on landslides

  • The fluid-solid coupling model of the Baijiabao landslide was built based on the finite element method to investigate the characteristic of change in seepage field in the Baijiabao landslide caused by rainfall and reservoir water level decline during drawdown of reservoir water level from December 1, 2014, to August 18, 2015, as well as the rule of change in stress field and displacement field caused by the change in seepage field

Read more

Summary

Introduction

In the Three Gorges Reservoir Area of China, there are about 664 landslides which are affected by the reservoir water level, and hydrodynamic conditions such as rainfall and reservoir water level variation have different degrees of impact on the stability of these landslides [1,2,3,4,5]. Made some groundbreaking research results and established an improved theory of real 3D consolidation, serving as a theoretical basis for follow-up scholars to carry out researches on the theory of fluid-solid coupling It had been widely used in landslide stability and deformation calculation through mutual influence mechanism between seepage, stress, and displacement fields, especially affected by rainfall and reservoir water level variation. Based on the theory of fluid-solid coupling, the model of Baijiabao landslide under the hydrodynamic boundary conditions of rainfall and reservoir water level was established by means of finite element numerical simulation, which has been confirmed as an effective model to analyze the effects of complex dynamic hydraulic boundary conditions on landslides. It can provide references for the movement mechanism of such landslides

Theory of Fluid-Solid Coupling in Saturated-Unsaturated Soil
Engineering Background
FE Model for Fluid-Solid Coupling
Simulation Results
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call